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Abstract
In this paper, we characterize all the Darboux polynomials of the Rabinovich
system, ẋ = hy − v1x + yz, ẏ = hx − v2y −xz and ż = −v3z + xy. Moreover,
we give the necessary and sufficient conditions in order that the Rabinovich
system has a rational first integral or an algebraic first integral.

PACS numbers: 02.30.lk, 02.30.−f, 45.40.−f

1. Introduction and statement of main results

We consider the Rabinovich system

ẋ = hy − v1x + yz = P(x, y, z)

ẏ = hx − v2y − xz = Q(x, y, z)

ż = −v3z + xy = R(x, y, z)

which is a three-wave interaction model, where x, y and z are real variables, v1, v2 and v3

are the damping rates, and h is proportional to the driving amplitude of the feeder wave;
see, for example, [1] or [2]. From the point of view of integrability, this system has been
studied using different theories and methods. Using the Painlevé method, Bountis et al [2]
found three integrals of motion. Applying some algebraic methods, Giacomini et al [3]
obtained four other integrals of motion. Recently, using the method of characteristic curves
for solving linear partial differential equations, Zhang [4] characterized all integrals of motion
by computing the Darboux polynomials with constant co-factors, in which we use the fact that
a polynomial vector field has a Darboux polynomial f with a constant co-factor k if and only
if it has an integral of motion f e−kt ; see, for example, [5]. In this paper, applying the method
given in [4] we obtain all Darboux polynomials of the Rabinovich system and we provide
the necessary and sufficient conditions for the Rabinovich system to have a rational or an
algebraic first integral. We remark that the search for Darboux polynomials is a very difficult
task. Poincaré [6] said that there are no valid methods to compute Darboux polynomials.
Indeed, his statement has been verified in the past century. Here, we provide a method
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to compute all Darboux polynomials of the system mentioned above. The significance of
searching for Darboux polynomials is that we can compute Darboux first integrals by using a
sufficient number of Darboux polynomials; see, for example, [7] and [8].

Let f (x, y, z) be a real polynomial in variables x, y and z. The algebraic surface
f (x, y, z) = 0 is an invariant algebraic surface of the Rabinovich system if

∂f

∂x
P +

∂f

∂y
Q +

∂f

∂z
R = kf (1)

for some real polynomial k(x, y, z) of, at most, one degree, which is called the co-factor of
f = 0. If f (x, y, z) = 0 is an invariant algebraic surface, then f is also called a Darboux
polynomial. From equation (1) it follows that if an orbit of the Rabinovich system has a point
on the invariant algebraic surface f (x, y, z) = 0, then the whole orbit is contained in the
surface.

We say that a real function

H : R
3 × R → R (x, y, z, t) �→ H(x, y, z, t)

is a first integral of the Rabinovich system, if it is constant on all solution curves (x(t), y(t)

and z(t)) of the Rabinovich system. In particular, if the first integral H is independent of the
time t and is a polynomial, then it is called a polynomial first integral. If the first integral H is
independent of the time t and is a rational function, then it is called a rational first integral. If
the first integral H is of the form H = f (x, y, z)eσ t , where f (x, y, z) is a polynomial and σ

is a non-zero constant, then it is called an integral of motion.
We say that two first integrals H1(x, y, z, t) and H2(x, y, z, t) are independent, if their

gradients are linear independent vectors for all points (x, y, z) ∈ R
3 except perhaps for a set

of zero Lebesgue measures. If the Rabinovich system has two independent first integrals, then
we say that it is completely integrable. We note that in this case the orbits of the Rabinovich
system are contained in the curves {H1(x, y, z, t) = h1}

⋂ {H2(x, y, z, t) = h2}, where h1

and h2 vary in R.
An algebraic function H(x, y, z) = c is a solution of the algebraic equation

f0 + f1c + f2c
2 + · · · + fn−1c

n−1 + cn = 0

where fi(x, y, z) are rational functions, and n is the smallest positive integer for which such
a relation holds. Obviously, any rational function is algebraic. The Rabinovich system is said
to be algebraically integrable if it has two independent algebraic first integrals.

Our main results are the following.

Theorem 1. The Rabinovich system has invariant algebraic surfaces or Darboux polynomials
if and only if one of the following statements holds.

(a) v1 = v2 = v3 = 0. Then H1 = x2 + y2 − 4hz and H2 = y2 + z2 − 2hz are two polynomial
first integrals. Consequently, the Rabinovich system is completely integrable. Their
invariant algebraic surfaces are contained in the set {(x, y, z) ∈ R

3 : x2 + y2 − 4hz =
c1, y

2 + z2 − 2hz = c2, c1, c2 ∈ R}.
(b) v1 = v2 = v3 �= 0 and h = 0. Then H1 = (x2 + y2)/(x2 − z2) and H2 = (y2 + z2)/

(x2 − z2) are two rational first integrals. Consequently, the Rabinovich system is com-
pletely integrable. Their invariant algebraic surfaces are contained in the set

{
(x, y, z) ∈

R
3 : c1(x

2 + y2) − c2(x
2 − z2) = 0, c3(y

2 + z2) − c4(x
2 − z2) = 0, c1, . . . , c4 ∈ R,

c2
1 + c2

2 �= 0, c2
3 + c2

4 �= 0
}
.

(c) v1 = v2 = 0, v2 �= v3 and h = 0. Then H = x2 + y2 is a polynomial first integral, which
is a Darboux polynomial with the zero co-factor.
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(d) v1 �= v2 and v2 = v3 = 0. Then H = y2 + z2 − 2hz is a polynomial first integral, which
is a Darboux polynomial with the zero co-factor.

(e) v1 = v3 = 0 and v2 �= 0. Then H = x2 − z2 − 2hz is a polynomial first integral, which
is a Darboux polynomial with the zero co-factor.

(f) v1 = v2 = v3 �= 0, and h �= 0. Then the Darboux polynomial is f = x2 − y2 − 2z2 with
the co-factor −2v1.

(g) v1 = v2 �= 0, v2 �= v3, and h = 0. Then the Darboux polynomial is f = x2 + y2 with the
co-factor −2v1.

(h) v1 = v2 �= 0, v3 = 2v1, and h �= 0. Then the Darboux polynomial is f = x2 + y2 − 4hz

with the co-factor −2v1.
(i) v1 �= v2, v2 = v3 �= 0, and h = 0. Then the Darboux polynomial is f = y2 + z2 with the

co-factor −2v2.
(j) v1 = v3 �= 0, v1 �= v2, and h = 0. Then the Darboux polynomials are f = x + z with the

co-factor y − v1 and f = x − z with the co-factor −y − v1.

We note that in the above theorem we obtain two new results compared with
theorem 1 of [4], namely the rational first integrals of case (b) and the Darboux polynomials
with non-constant co-factors of case (j). From theorem 1 we can obtain the following result.

Corollary 2. For the Rabinovich system the following statements hold.

(i) The Rabinovich system has a rational first integral if and only if v1 = v2 = v3 = 0, or
v1 = v2 = v3 �= 0 and h = 0, or v1 = v2 = 0, v2 �= v3 and h = 0, or v1 �= v2 and
v2 = v3 = 0, or v1 = v3 = 0 and v2 �= 0.

(ii) The Rabinovich system is algebraically integrable if and only if v1 = v2 = v3 = 0, or
v1 = v2 = v3 �= 0 and h = 0.

In order to prove this corollary, we need the following results (see, for example, Goriely
[9] and Llibre and Zhang [10]).

Proposition 3. For the Rabinovich system, the following statements hold.

(i) If the polynomial functions f and g are relative prime, then f/g is a rational first integral
of the Rabinovich system if and only if f and g are both Darboux polynomials with the
same co-factor.

(ii) The Rabinovich system is algebraically integrable if and only if it has two independent
rational first integrals.

Corollary 2 follows directly from theorem 1 and proposition 3.

2. The proof of theorem 1

We assume that

f (x, y, z) =
n∑

i=0

fi(x, y, z)

is a Darboux polynomial of the Rabinovich system with a non-constant co-factor k(x, y, z),
where fi is a homogeneous polynomial of degree i for i = 0, 1, . . . , n. We remark that in
[4] the author obtained all the Darboux polynomials with constant co-factors. So, here we
consider only the case when the co-factor is non-constant. Without loss of generality, we can
assume that the co-factor is of the form

k(x, y, z) = px + ry + qz + c.
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Substituting f and k into equation (1) and identifying the terms of the same degree, we
obtain

yz
∂fn

∂x
− xz

∂fn

∂y
+ xy

∂fn

∂z
= (px + ry + qz)fn (2)

yz
∂fi

∂x
− xz

∂fi

∂y
+ xy

∂fi

∂z
= (px + ry + qz)fi + (v1x − hy)

∂fi+1

∂x
+ (v2y − hx)

∂fi+1

∂y

+ v3z
∂fi+1

∂z
+ cfi+1 i = n − 1, n − 2, . . . , 0. (3)

In what follows, in order to prove our theorem we use the method of characteristic
curves for solving linear partial differential equations (see, for example, [11] and [4]). The
characteristic equation associated with equation (2) is

dx

dy
= −y

x

dz

dy
= −y

z
.

Its general solution is

x2 + y2 = c1 y2 + z2 = c2

where c1 and c2 are arbitrary constants.
We consider the change of variables

u = x2 + y2 v = y2 + z2 w = y. (4)

Correspondingly, the inverse transformation is

x = ±
√

u − w2 y = w z = ±
√

v − w2. (5)

From equation (2) we obtain the ordinary differential equation (for fixed u and v)

−
(
±

√
u − w2

) (
±

√
v − w2

) df n

dw
=

[
p

(
±

√
u − w2

)
+ rw + q

(
±

√
v − w2

)]
f n

where f n(u, v,w) = fn(x, y, z). In the following, unless otherwise specified, we always
denote the function R(x, y, z) by R(u, v,w), written in the variables u, v and w by using
equation (4).

Solving the last equation we find that for xz > 0

f n = A(u, v)
∣∣2√

(u − w2)(v − w2) + 2w2 − (u + v)
∣∣−r/2

× exp

(
−p

(
±arcsin

w√
v

))
exp

(
−q

(
±arcsin

w√
u

))

for xz < 0

f n = A(u, v)
∣∣2√

(u − w2)(v − w2) − 2w2 + (u + v)
∣∣r/2

× exp

(
−p

(
±arcsin

w√
v

))
exp

(
−q

(
±arcsin

w√
u

))

whereA(u, v) is an arbitrary smooth function in u and v. In order for fn(x, y, z) = f n(u, v,w)

to be a homogeneous polynomial of degree n in x, y and z, we must have p = q = 0, the
function A must be a homogeneous polynomial in x2 + y2 and y2 + z2, and r must be a
convenient integer. More precisely, if r is a positive or negative integer, then fn =
(x + z)rA(x2 + y2, y2 + z2) or fn = (x − z)−rA(x2 + y2, y2 + z2), respectively. Without



Invariant algebraic surfaces of the Rabinovich system 503

loss of generality, we can assume that f is a Darboux polynomial of degree 2m + r (2m − r)

with the co-factor k = ry + c if r is a positive (negative) integer, and that

f =
2m+r∑
i=0

fi

and

f =
2m−r∑
i=0

fi

respectively, where fi is a homogeneous polynomial of degree i, and

f2m+r = (x + z)r
m∑

i=0

a
(m)

i (x2 + y2)m−i (y2 + z2)i

and

f2m−r = (x − z)−r

m∑
i=0

a
(m)
i (x2 + y2)m−i (y2 + z2)i

respectively.
First we consider the case r > 0. Introducing f2m+r into equation (3) with i = 2m + r − 1

and performing some calculations, we have

yz
∂f2m+r−1

∂x
− xz

∂f2m+r−1

∂y
+ xy

∂f2m+r−1

∂z
− ryf2m+r−1

= (x + z)r
m∑

i=0

[(2(m − i) + r)v1 + 2iv3 + c]a(m)
i (x2 + y2)m−i (y2 + z2)i

+ (x + z)r
m−1∑
i=0

2
[
(m − i)(v2 − v1)a

(m)
i + (i + 1)(v2 − v3)a

(m)
i+1

]

× (x2 + y2)m−i−1(y2 + z2)iy2

− (x + z)r
m∑

i=0

a
(m)
i

1∑
j=0

(4h)1−j

(
m − i

1 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−1−i+j (y2 + z2)i−j xy

+ (x + z)r−1
m∑

i=0

r(v3 − v1)a
(m)
i (x2 + y2)m−i (y2 + z2)iz

− (x + z)r−1
m∑

i=0

hra
(m)
i (x2 + y2)m−i (y2 + z2)iy.

In the following proof, we consider only the case xz < 0. For xz > 0 the proof is completely
similar. For simplicity, we may assume that x = √

u − w2 and z = −√
v − w2. Using the

transformations (4) and (5), the above equation becomes

√
u − w2

√
v − w2

df 2m+r−1

dw
− rwf 2m+r−1

=
(√

u − w2 −
√

v − w2
)r

m∑
i=0

[(2(m − i) + r)v1 + 2iv3 + c]a(m)
i um−ivi
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+
(√

u − w2 −
√

v − w2
)r

m−1∑
i=0

2
[
(m − i)(v2 − v1)a

(m)
i + (i + 1)(v2 − v3)a

(m)

i+1

]

× um−i−1viw2

−
(√

u − w2 −
√

v − w2
)r

m∑
i=0

a
(m)

i

1∑
j=0

(4h)1−j

(
m − i

1 − j

)
(2h)j

(
i

j

)

× um−1−i+j νi−j
√

u − w2w

−
(√

u − w2 −
√

v − w2
)r−1 m∑

i=0

r(v3 − v1)a
(m)
i um−i νi

√
v − w2

−
(√

u − w2 −
√

v − w2
)r−1 m∑

i=0

hra
(m)

i um−iviw. (6)

This is a linear ordinary differential equation in f 2m+r−1. The corresponding homogeneous
equation

√
u − w2

√
v − w2

df ∗
2m+r−1

dw
− rwf ∗

2m+r−1 = 0

has a general solution

f ∗
2m+r−1 =

(√
u − w2 −

√
v − w2

)r

A∗
2m−1(u, v)

where A∗
2m−1(u, v) is an arbitrary smooth function in u and v. In order to use the method of

variation of constants, we assume that

f 2m+r−1 =
(√

u − w2 −
√

v − w2
)r

A2m−1(u, v,w)

is a solution of equation (6), then A2m−1(u, v,w) satisfies

dA2m−1

dw
=

m∑
i=0

[(2(m − i) + r)v1 + 2iv3 + c]a(m)
i um−ivi 1√

u − w2
√

v − w2

+
m−1∑
i=0

2
[
(m − i)(v2 − v1)a

(m)
i + (i + 1)(v2 − v3)a

(m)
i+1

]

× um−i−1v
w2

√
u − w2

√
v − w2

−
m∑

i=0

a
(m)
i

1∑
j=0

(4h)1−j

(
m − i

1 − j

)
(2h)j

(
i

j

)

× um−1−i+j νi−j
√

u − w2
w√

v − w2

+
m∑

i=0

r(v3 − v1)a
(m)
i um−iνi 1(√

u − w2 − √
v − w2

)√
u − w2

−
m∑

i=0

hra
(m)
i um−ivi w(√

u − w2 − √
v − w2

)√
u − w2

√
v − w2

.
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Because ∫
w2 dw√

u − w2
√

v − w2
= −

∫ √
u − w2

√
v − w2

dw + u

∫
w dw√

u − w2
√

v − w2

thus ∫
dw(√

u − w2 − √
v − w2

)√
u − w2

= w

u − v
+

∫ √
v − w2

√
u − w2

dw

and ∫
dw√

u − w2
√

v − w2

∫ √
u − w2

√
v − w2

dw

are elliptic integrals of the first and second kind, respectively; see, for example, [12]. In order
for A2m−1(x, y, z) = A2m−1(u, v,w) to be a homogeneous polynomial of degree 2m − 1, we
must have

[(2(m − i) + r)v1 + 2iv3 + c]a(m)
i = 0 i = 0, 1, . . . ,m

(m − i)(v2 − v1)a
(m)
i + (i + 1)(v2 − v3)a

(m)
i+1 = 0 i = 0, 1, . . . ,m − 1

r(v3 − v1)a
(m)

i = 0 i = 0, 1, . . . ,m.

(7)

Consequently,

f2m+r−1 = −(x + z)r
m∑

i=0

a
(m)

i

1∑
j=0

(4h)1−j

(
m − i

1 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−1−i+j (y2 + z2)i−j z

− (x + z)r−1
m∑

i=0

hra
(m)
i (x2 + y2)m−i (y2 + z2)i .

From equation (7) and using the condition r �= 0, for otherwise the co-factor is a constant,
we have the following two cases:

(I) v1 = v2 = v3, and then c = −(2m + r)v1;
(II) v1 = v3 �= v2, and then c = −(2m + r)v1, and a

(m)
i �= 0 for i = 0, 1, . . . ,m.

Case (I): v1 = v2 = v3 and c = −(2m + r)v1. Introducing f2m+r−1 into equation (3) with
i = 2m + r − 2 and performing some calculations, we obtain

yz
∂f2m+r−2

∂x
− xz

∂f2m+r−2

∂y
+ xy

∂f2m+r−2

∂z
− ryf2m+r−2

= (x + z)r
m−1∑
i=0

2hv1

[
2(m − i)a

(m)

i + (i + 1)a
(m)

i+1

]
(x2 + y2)m−1−i (y2 + z2)iz

+ (x + z)r
m∑

i=0

a
(m)

i 2
2∑

j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−2−i+j (y2 + z2)i−j xyz

− (x + z)r−1
m−1∑
i=0

2h2r
[
2(m − i)a

(m)

i + (i + 1)a
(m)

i+1

]

× (x2 + y2)m−1−i (y2 + z2)i(x − z)y
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− (x + z)r−1
m∑

i=0

hrv1a
(m)

i (x2 + y2)m−i (y2 + z2)i

− (x + z)r−2
m∑

i=0

h2r(r − 1)a
(m)
i (x2 + y2)m−i (y2 + z2)iy.

Working in a similar way to the proof of f2m+r−1, from this equation we obtain the ordinary
differential equation√

u − w2
√

v − w2
df 2m+r−2

dw
− rwf 2m+r−2

= −
(√

u − w2 −
√

v − w2
)r

m−1∑
i=0

2hv1

[
2(m − i)a

(m)

i + (i + 1)a
(m)

i+1

]

× um−1−ivi
√

v − w2

−
(√

u − w2 −
√

v − w2
)r

m∑
i=0

a
(m)
i 2

2∑
j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)

× um−2−i+j vi−j
√

u − w2
√

v − w2w

−
(√

u − w2 −
√

v − w2
)r−1 m−1∑

i=0

2h2r
[
2(m − i)a

(m)
i + (i + 1)a

(m)

i+1

]
um−1−i vi

×
(√

u − w2 +
√

v − w2
)

w

−
(√

u − w2 −
√

v − w2
)r−1 m∑

i=0

hrv1a
(m)
i um−i vi

−
(√

u − w2 −
√

v − w2
)r−2 m∑

i=0

h2r(r − 1)a
(m)

i um−iviw.

The corresponding homogeneous equation has the general solution

f ∗
2m+r−2 =

(√
u − w2 −

√
v − w2

)r

A∗
2m−2(u, v).

Let

f 2m+r−2 =
(√

u − w2 −
√

v − w2
)r

A2m−2(u, v,w)

be a solution of the previous linear ordinary differential equation. Then the function A2m−2

satisfies the following equation:

dA2m−2

dw
= −

m−1∑
i=0

2hv1

[
2(m − i)a

(m)
i + (i + 1)a

(m)

i+1

]
um−1−ivi 1√

u − w2

−
m∑

i=0

a
(m)
i 2

2∑
j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)
um−2−i+j vi−j w

−
m−1∑
i=0

2h2r
[
2(m − i)a

(m)
i + (i + 1)a

(m)
i+1

]
um−1−ivi

×
(√

u − w2 +
√

v − w2
)

w(√
u − w2 − √

v − w2
)√

u − w2
√

v − w2
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−
m∑

i=0

hrv1a
(m)

i um−ivi 1(√
u − w2 − √

v − w2
)√

u − w2
√

v − w2

−
m∑

i=0

h2r(r − 1)a
(m)
i um−ivi w(√

u − w2 − √
v − w2

)2 √
u − w2

√
v − w2

.

In order for A2m−2(x, y, z) = A2m−2(u, v,w) to be a homogeneous polynomial of degree
2m − 2, we should have

hv1

[
2(m − i)a

(m)
i + (i + 1)a

(m)
i+1

]
= 0 i = 0, 1, . . . ,m − 1

hv1a
(m)
i = 0 i = 0, 1, . . . ,m.

(8)

Therefore,

f2m+r−2 = (x + z)r
m−1∑
i=0

a
(m−1)
i (x2 + y2)m−1−i (y2 + z2)i

+ (x + z)r
m∑

i=0

a
(m)

i

2∑
j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−2−i+j (y2 + z2)i−j z2

+ (x + z)r−1
m∑

i=0

hr

2
a

(m)
i

1∑
j=0

(4h)1−j

(
m − i

1 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−1−i+j (y2 + z2)i−j (x − z)

+ (x + z)r−2
m∑

i=0

h2

(
r

2

)
a

(m)
i (x2 + y2)m−i (y2 + z2)i .

where a
(m−1)
i is a real constant for i = 0, 1, . . . ,m − 1. From conditions (8) we distinguish

the following two subcases.

Subcase 1: h = 0. Then we have

f2m+r−1 ≡ 0 f2m+r−2 = (x + z)r
m−1∑
i=0

a
(m−1)
i (x2 + y2)m−1−i (y2 + z2)i .

Introducing f2m+r−2 into equation (3) with i = 2m + r − 3 and performing some
computations, we obtain

yz
∂f2m+r−3

∂x
− xz

∂f2m+r−3

∂y
+ xy

∂f2m+r−3

∂z
− ryf2m+r−3

= −2v1(x + z)r
m−1∑
i=0

a
(m−1)

i (x2 + y2)m−1−i (y2 + z2)i .

Working in a similar way to the proof of f2m+r−1, we obtain

v1a
(m−1)
i = 0 for i = 0, 1, . . . ,m − 1

and f2m+r−3 ≡ 0. By recursive calculations, we find that for s = 2, 3, . . . ,m − 1

f2m+r−2s = (x + z)r
m−s∑
i=0

a
(m−s)
i (x2 + y2)m−s−i (y2 + z2)i f2m+r−2s−1 ≡ 0
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with conditions

v1a
(m−s)

i = 0 for s = 2, 3, . . . ,m − 1; i = 0, 1, . . . ,m − s.

If v1 = 0, then c = v1 = v2 = v3 = 0. We find that

f = (x + z)r
m∑

s=0

m−s∑
i=0

a
(m−s)
i (x2 + y2)m−s−i (y2 + z2)i

is a Darboux polynomial of degree 2m + r , where
∑m

i=0

(
a

(m)
i

)2 �= 0 and a
(m−s)
i is an arbitrary

constant for s = 0, 1, . . . ,m and i = 0, 1, . . . ,m − s.

If v1 �= 0, then a
(m−s)
i = 0 for s = 1, 2, . . . ,m − 1 and i = 0, 1, . . . ,m − s. Hence,

f = (x + z)r
m∑

i=0

a
(m)
i (x2 + y2)m−i (y2 + z2)i

is a Darboux polynomial with the non-constant co-factor k = ry − (2m + r)v1, where∑m
i=0

(
a

(m)
i

)2 �= 0.

Subcase 2: h �= 0 and v1 = 0. Then c = v1 = v2 = v3 = 0. Substituting f2m+r−2 into
equation (3) with i = 2m + r − 3 and performing some calculations which are similar to the
proof of f2m+r−1, we can obtain that

f2m+r−3 = −(x + z)r
m−1∑
i=0

a
(m−1)
i

1∑
j=0

(4h)1−j

(
m − 1 − i

1 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−2−i+j (y2 + z2)i−j z

+ (x + z)r−1
m−1∑
i=0

hra
(m−1)
i (x2 + y2)m−1−i (y2 + z2)i

− (x + z)r
m∑

i=0

a
(m)
i

3∑
j=0

(4h)3−j

(
m − i

3 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−3−i+j (y2 + z2)i−j z3

− (x + z)r−1
m∑

i=0

hra
(m)
i

2∑
j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−2−i+j (y2 + z2)i−j xz

+ (x + z)r−1
m∑

i=0

h2r2

2
a

(m)
i

1∑
j=0

(4h)1−j

(
m − i

1 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−1−i+j (y2 + z2)i−j

− (x + z)r−2
m∑

i=0

h2

(
r

2

)
a

(m)
i

1∑
j=0

(4h)1−j

(
m − i

1 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−1−i+j (y2 + z2)i−j z

− (x + z)r−3
m∑

i=0

h3

(
r

3

)
a

(m)
i (x2 + y2)m−i (y2 + z2)i .
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Introducing f2m+r−3 into equation (3) with i = 2m + r − 4 and performing some
computations, we have

yz
∂f2m+r−4

∂x
− xz

∂f2m+r−4

∂y
+ xy

∂f2m+r−4

∂z
− ryf2m+r−4

= (x + z)r
m−1∑
i=0

2a
(m−1)

i

2∑
j=0

(4h)2−j

(
m − 1 − i

2 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−3−i+j (y2 + z2)i−j xyz

− (x + z)r−1
m−1∑
i=0

hra
(m−1)
i

1∑
j=0

(4h)1−j

(
m − 1 − i

1 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−2−i+j (y2 + z2)i−j (x − z)y

− (x + z)r−2
m−1∑
i=0

2h2

(
r

2

)
a

(m−1)
i (x2 + y2)m−1−i (y2 + z2)iy

+ (x + z)r
m∑

i=0

a
(m)
i 4

4∑
j=0

(4h)4−j

(
m − i

4 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−4−i+j (y2 + z2)i−j xyz3

+ (x + z)r−1
m∑

i=0

hra
(m)

i

3∑
j=0

(4h)3−j

(
m − i

3 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−3−i+j (y2 + z2)i−j (3x2 + z2)yz

− (x + z)r−2
m∑

i=0

h2r3a
(m)

i

2∑
j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−2−i+j (y2 + z2)i−j xy

+ (x + z)r−2
m∑

i=0

2h2

(
r

2

)
a

(m)

i

2∑
j=0

(4h)2−j

(
m − i

2 − j

)

× (2h)j
(

i

j

)
(x2 + y2)m−2−i+j (y2 + z2)i−j xyz

+ (x + z)r−2
m∑

i=0

h2ra
(m)
i

2∑
j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−2−i+j (y2 + z2)i−j yz2

− (x + z)r−2
m∑

i=0

2h3

(
r

2

)
a

(m)

i

1∑
j=0

(4h)1−j

(
m − i

1 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−1−i+j (y2 + z2)i−j y

− (x + z)r−3
m∑

i=0

4h3

(
r

3

)
a

(m)

i

1∑
j=0

(4h)1−j

(
m − i

1 − j

)
(2h)j

(
i

j

)

× (x2 + y2)m−1−i+j (y2 + z2)i−j xy

− (x + z)r−4
m∑

i=0

h4

4

(
r

4

)
a

(m)
i (x2 + y2)m−i (y2 + z2)iy.
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Working in a similar way to the proof of f2m+r−1, we obtain the ordinary differential
equation

√
u − w2

√
v − w2

df 2m+r−4

dw
− rwf 2m+r−4

= −
(√

u − w2 −
√

v − w2
)r

m−1∑
i=0

2a
(m−1)

i

2∑
j=0

(4h)2−j

×
(

m − 1 − i

2 − j

)
(2h)j

(
i

j

)
um−3−i+j vi−j

√
u − w2

√
v − w2w

−
(√

u − w2 −
√

v − w2
)r−1 m−1∑

i=0

hra
(m−1)
i

1∑
j=0

(4h)1−j

×
(

m − 1 − i

1 − j

)
(2h)j

(
i

j

)
um−2−i+j vi−j

(√
u − w2 +

√
v − w2

)
w

−
(√

u − w2 −
√

v − w2
)r−2 m−1∑

i=0

2h2

(
r

2

)
a

(m−1)

i um−1−i viw

−
(√

u − w2 −
√

v − w2
)r

m∑
i=0

a
(m)
i 4

4∑
j=0

(4h)4−j

×
(

m − i

4 − j

)
(2h)j

(
i

j

)
um−4−i+j vi−j

√
u − w2

(√
v − w2

)3
w

−
(√

u − w2 −
√

v − w2
)r−1 m∑

i=0

hra
(m)
i

3∑
j=0

(4h)3−j

(
m − i

3 − j

)
(2h)j

×
(

i

j

)
um−3−i+j vi−j

(
3

(√
u − w2

)2
+

(√
v − w2

)2
)

w
√

v − w2

−
(√

u − w2 −
√

v − w2
)r−2 m∑

i=0

h2r3a
(m)
i

2∑
j=0

(4h)2−j

×
(

m − i

2 − j

)
(2h)j

(
i

j

)
um−2−i+j vi−j

√
u − w2w

−
(√

u − w2 −
√

v − w2
)r−2 m∑

i=0

2h2

(
r

2

)
a

(m)
i

2∑
j=0

(4h)2−j

×
(

m − i

2 − j

)
(2h)j

(
i

j

)
um−2−i+j vi−j

√
u − w2

√
v − w2w

+
(√

u − w2 −
√

v − w2
)r−2 m∑

i=0

h2ra
(m)

i

2∑
j=0

(4h)2−j

×
(

m − i

2 − j

)
(2h)j

(
i

j

)
um−2−i+j vi−j (v − w2)w

−
(√

u − w2 −
√

v − w2
)r−2 m∑

i=0

2h3

(
r

2

)
a

(m)
i

1∑
j=0

(4h)1−j
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×
(

m − i

2 − j

)
(2h)j

(
i

j

)
um−1−i+j vi−j w

−
(√

u − w2 −
√

v − w2
)r−3 m∑

i=0

4h3

(
r

3

)
a

(m)
i

1∑
j=0

(4h)1−j

×
(

m − i

1 − j

)
(2h)j

(
i

j

)
um−1−i+j vi−j

√
u − w2w

−
(√

u − w2 −
√

v − w2
)r−4 m∑

i=0

h4

4

(
r

4

)
a

(m)
i um−iviw.

The corresponding homogeneous equation

√
u − w2

√
v − w2

df ∗
2m+r−4

dw
− rwf ∗

2m+r−4 = 0

has a general solution

f ∗
2m+r−4 =

(√
u − w2 −

√
v − w2

)r

A∗
2m−4(u, v).

Let

f 2m+r−4 =
(√

u − w2 −
√

v − w2
)r

A2m−4(u, v,w)

be a solution of the previous linear ordinary differential equation, then A2m−4(u, v,w) satisfies
the following equation:

dA2m−4

dw
= −

m−1∑
i=0

2a
(m−1)

i

2∑
j=0

(4h)2−j

(
m − 1 − i

2 − j

)
(2h)j

(
i

j

)

× um−3−i+j vi−j w

−
m−1∑
i=0

hra
(m−1)
i

1∑
j=0

(4h)1−j

(
m − 1 − i

1 − j

)
(2h)j

(
i

j

)

× um−2−i+j vi−j

(√
u − w2 +

√
v − w2

)
w(√

u − w2 − √
v − w2

)√
u − w2

√
v − w2

−
m−1∑
i=0

2h2

(
r

2

)
a

(m−1)

i um−1−ivi w(√
u − w2 − √

v − w2
)2 √

u − w2
√

v − w2

−
m∑

i=0

a
(m)

i 4
4∑

j=0

(4h)4−j

(
m − i

4 − j

)
(2h)j

(
i

j

)

× um−4−i+j vi−j (v − w2)w

−
m∑

i=0

hra
(m)
i

3∑
j=0

(4h)3−j

(
m − i

3 − j

)
(2h)j

(
i

j

)

× um−3−i+j vi−j

((√
v − w2

)3
+ 3

(√
u − w2

)2 √
v − w2

)
w

(√
u − w2 − √

v − w2
)√

u − w2
√

v − w2
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−
m∑

i=0

h2r3a
(m)
i

2∑
j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)

× um−2−i+j vi−j w(√
u − w2 − √

v − w2
)2 √

v − w2

−
m∑

i=0

2h2

(
r

2

)
a

(m)

i

2∑
j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)

× um−2−i+j vi−j w(√
u − w2 − √

v − w2
)2

+
m∑

i=0

h2ra
(m)
i

2∑
j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)

× um−2−i+j vi−j

√
v − w2w(√

u − w2 − √
v − w2

)2 √
u − w2

−
m∑

i=0

2h3

(
r

2

)
a

(m)
i

1∑
j=0

(4h)1−j

(
m − i

1 − j

)
(2h)j

(
i

j

)
um−2−i+j vi−j w

−
m∑

i=0

4h3

(
r

3

)
a

(m)

i

1∑
j=0

(4h)1−j

(
m − i

1 − j

)
(2h)j

(
i

j

)

× um−1−i+j vi−j w(√
u − w2 − √

v − w2
)3 √

v − w2

−
m∑

i=0

h4

4

(
r

4

)
a

(m)
i um−i vi w(√

u − w2 − √
v − w2

)4 √
u − w2

√
v − w2

.

Using the integrating formula

∫ √
v − w2w dw

√
u − w2

(√
u − w2 − √

v − w2
)2

= 1

(u − v)2


vw2 − w4

4
+

w2 + 3u − v

4

√
u − w2

√
v − w2

− (u − v)2 + 2u + 6v

8
ln

(√
u − w2 − √

v − w2
)2

2




and the fact that A2m−4(x, y, z) = A2m−4(u, v,w) is a homogeneous polynomial in x, y and
z, we must have

4(m − i)(m − i − 1)a
(m)
i + 4(m − 1 − i)(i + 1)a

(m)
i+1 + (i + 2)(i + 1)a

(m)
i+2 = 0

i = 0, 1, . . . ,m − 2 (9)
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where we have applied the equality
m∑

i=0

a
(m)
i

2∑
j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)
(x2 + y2)m−2−i+j (y2 + z2)i−j

=
m−2∑
i=0

4h2
[
4(m − i)(m − i − 1)a

(m)

i + 4(m − 1 − i)(i + 1)a
(m)

i+1

+ (i + 2)(i + 1)a
(m)
i+2

]
(x2 + y2)m−2−i (y2 + z2)i .

By recursive calculations, we obtain

f2m+r−2s =
s∑

k=0

m−k∑
i=0

a
(m−k)
i (x2 + y2)m−k−i (y2 + z2)i

(
r

2s − 2k

)
h2s−2k(x + z)r−2s+2k

+
hr

2

s−1∑
k=0

m−k∑
i=0

a
(m−k)
i

1∑
j=0

(4h)1−j

(
m − i

1 − j

) (
i

j

)
(2h)j

× (x2 + y2)m−k−1−i+j (y2 + z2)i−j

(
r

2s − 2k − 2

)

× h2s−2k−2(x + z)r−2s+2k+2

− z

s−1∑
k=0

m−k∑
i=0

a
(m−k)
i

1∑
j=0

(4h)1−j

(
m − i

1 − j

) (
i

j

)
(2h)j

× (x2 + y2)m−k−1−i+j (y2 + z2)i−j

(
r

2s − 2k − 1

)

× h2s−2k−1(x + z)r−2s+2k+1 s = 2, 3, . . . ,m

f2m+r−2s−1 =
s∑

k=0

m−k∑
i=0

a
(m−k)
i (x2 + y2)m−k−i (y2 + z2)i

×
(

r

2s − 2k + 1

)
h2s−2k+1(x + z)r−2s+2k−1

+
hr

2

s−1∑
k=0

m−k∑
i=0

a
(m−k)
i

1∑
j=0

(4h)1−j

(
m − i

1 − j

) (
i

j

)
(2h)j

× (x2 + y2)m−k−1−i+j (y2 + z2)i−j

(
r

2s − 2k − 1

)
h2s−2k−1(x + z)r−2s+2k+1

− z

s∑
k=0

m−k∑
i=0

a
(m−k)
i

1∑
j=0

(4h)1−j

(
m − i

1 − j

) (
i

j

)
(2h)j

× (x2 + y2)m−k−1−i+j (y2 + z2)i−j

(
r

2s − 2k

)

× h2s−2k(x + z)r−2s+2k s = 2, 3, . . . ,m

fj = 0 j = 0, 1, . . . , r − 1

where the coefficients a
(s)

i satisfy the following conditions for s = 2, 3, . . . ,m − 1

4(s − i)(s − i − 1)a
(s)
i + 4(s − 1 − i)(i + 1)a

(s)

i+1 + (i + 2)(i + 1)a
(s)

i+2 = 0

i = 0, 1, . . . , s − 2. (10)
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From equations (9) and (10) we easily find that for s = 2, 3, . . . ,m

a
(s)

i = (−2)i−1

(
s − 1
i − 1

)
a

(s)

1 − (−2)i
(

s

i

)
a

(s)

0 i = 1, 2, . . . , s.

Hence, the Rabinovich system has the Darboux polynomial of degree 2m + r

f =
2m∑
l=0

f2m+r−l

= (x + z + h)r
m∑

i=0

[
(x2 + (2i − 1)y2 + (2i − 2)z2 + 2hi(hr − 2z))a

(i)
0

+ (y2 + z2 + h(hr − 2z))a
(i)
1

]
(x2 − y2 − 2z2)i−1

where a
(i)
0 , a

(i)
1 are arbitrary constants for i = 0, 1, . . . ,m and a

(0)
1 = 0.

Case (II): v1 = v3 �= v2. Then c = −(2m + r)v1, and (m − i)a
(m)
i + (i + 1)a

(m)
i+1 = 0 for

i = 0, 1, . . . ,m − 1. These equations are equivalent to

a
(m)
i = (−1)i

(
m

i

)
a

(m)
0 i = 0, 1, . . . ,m.

Therefore, we have

f2m+r = (x + z)r
m∑

i=0

a
(m)
i (x2 + y2)m−i (y2 + z2)i = a

(m)
0 (x2 − z2)m(x + z)r

f2m+r−1 = −2hma
(m)
0 (x2 − z2)m−1(x + z)rz + hra

(m)
0 (x2 − z2)m(x + z)r−1.

Introducing f2m+r−1 into equation (3) with i = 2m + r − 1 and working in a similar way to
solve f2m+r−1, we can prove that

f2m+r−2 = (x + z)r
m−1∑
i=0

a
(m−1)
i (x2 + y2)m−1−i (y2 + z2)i + 4h2

(
m

2

)
a

(m)
0 (x2 − z2)m−2(x + z)rz2

+ h2rma
(m)

0 (x2 − z2)m−1(x + z)r−1(x − z) + h2

(
r

2

)
a

(m)

0 (x2 − z2)m(x + z)r−2

with the condition hv1 = 0.

Subcase 1: h = 0. Then working in a similar way to the proof of subcase 1 of case (I), we
can find that, if v1 = 0, the Darboux polynomial of degree 2m + r is of the form

f =
m∑

i=0

ai(x − z)i(x + z)r+i

where am �= 0 and ai are arbitrary constants for i = 0, 1, . . . ,m − 1.
If v1 �= 0, the Darboux polynomial of degree 2m + r is

f = a(x − z)m(x + z)r+m

with the co-factor ry − (2m + r)v1, where a is a non-zero constant.

Subcase 2: h �= 0. Then v1 = v3 = c = 0 and v2 �= 0. Working in a similar way to the proof
of subcase 2 of case (I), we can prove easily that the Darboux polynomial for the Rabinovich
system is of the form

f = (x + z + h)r
m∑

i=0

ai(x
2 − z2 − 2hz + rh2)i
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with the co-factor k = ry, where ai are arbitrary constants for i = 0, 1, . . . ,m and∑m
i=0 a2

i �= 0.
Summing up the above results, we have proven that, if f is a Darboux polynomial with a

non-constant co-factor, then one of the following five cases holds:

1. v1 = v2 = v3 = 0 and h = 0

f = (x + z)r
m∑

s=0

m−s∑
i=0

a
(m−s)

i (x2 + y2)m−s−i (y2 + z2)i

is a Darboux polynomial with the co-factor k = ry.
2. v1 = v2 = v3 = 0 and h �= 0

f = (x + z + h)r
m∑

i=0

[
(x2 + (2i − 1)y2 + (2i − 2)z2 + 2hi(hr − 2z))a

(i)
0

+ (y2 + z2 + h(hr − 2z))a
(i)

1

]
(x2 − y2 − 2z2)i−1

is a Darboux polynomial with the co-factor k = ry.
3. v1 = v2 = v3 �= 0 and h = 0

f = (x + z)r
m∑

i=0

a
(m)
i (x2 + y2)m−i (y2 + z2)i

is a Darboux polynomial with the co-factor k = ry − (2m + r)v1.
4. v1 = v3 = 0 and v2 �= 0

f = (x + z + h)r
m∑

i=0

ai(x
2 − z2 − 2hz + rh2)i

is a Darboux polynomial with the co-factor k = ry.
5. v1 = v3 �= 0, v1 �= v2 and h = 0

f = a(x − z)m(x + z)m+r

is a Darboux polynomial with the co-factor k = ry − (2m + r)v1.

Working in a similar way as in the proof of the case that r is a positive integer, for r
being a negative integer we can prove that if f is a Darboux polynomial with a non-constant
co-factor, then one of the following five cases holds:

1. v1 = v2 = v3 = 0 and h = 0

f = (x − z)−r

m∑
s=0

m−s∑
i=0

a
(m−s)
i (x2 + y2)m−s−i (y2 + z2)i

is a Darboux polynomial with the co-factor k = ry, where
∑m

i=0

(
a

(m)
i

)2 �= 0 and a
(m−s)
i

are arbitrary constants for s = 0, 1, . . . ,m and i = 0, 1, . . . ,m − s.

2. v1 = v2 = v3 = 0 and h �= 0

f = (x − z − h)−r

m∑
i=0

[
(x2 + (2i − 1)y2 + (2i − 2)z2 + 2hi(hr − 2z))a

(i)
0

+ (y2 + z2 + h(hr − 2z))a
(i)
1

]
(x2 − y2 − 2z2)i−1

is a Darboux polynomial with the co-factor k = ry, where a
(i)
0 , a

(i)
1 are arbitrary constants

for i = 0, 1, . . . ,m, a
(0)
1 = 0 and

(
a

(m)
0

)2
+

(
a

(m)
1

)2 �= 0.
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3. v1 = v2 = v3 �= 0 and h = 0

f = (x − z)−r

m∑
i=0

a
(m)
i (x2 + y2)m−i (y2 + z2)i

is a Darboux polynomial with the co-factor k = ry − (2m− r)v1, where a
(m)
i are arbitrary

constants for i = 0, 1, . . . ,m and
∑m

i=0

(
a

(m)
i

)2 �= 0.
4. v1 = v3 = 0 and v2 �= 0

f = (x − z − h)−r

m∑
i=0

ai(x
2 − z2 − 2hz + rh2)i

is a Darboux polynomial with the co-factor k = ry, where ai are arbitrary constants for
i = 0, 1, . . . ,m and

∑m
i=0 a2

i �= 0.
5. v1 = v3 �= 0, v1 �= v2 and h = 0

f = a(x + z)m(x − z)m−r

is a Darboux polynomial with the co-factor k = ry − (2m − r)v1, where a is a non-zero
constant.

Combining the above conclusions and theorem 1 of [4], we have proven the ‘only if’ part
of the theorem. The ‘if’ part follows from some easy computations. This completes the proof
of theorem 1.
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